Zde můžete vidět rozdíly mezi vybranou verzí a aktuální verzí dané stránky.
| Obě strany předchozí revize Předchozí verze Následující verze | Předchozí verze | ||
|
home:prog:ap1 [2017/01/13 21:58] martin005 [Nepoziční číselná soustava] |
home:prog:ap1 [2020/04/12 16:56] (aktuální) |
||
|---|---|---|---|
| Řádek 1: | Řádek 1: | ||
| - | ====== AP1, IN1 Výpočetní systémy I ====== | + | ====== AP1, IN1 |
| + | Výpočetní systémy I ====== | ||
| ===== Zadání ===== | ===== Zadání ===== | ||
| + | = | ||
| IN (číselné soustavy, vztahy mezi číselnými soustavami, zobrazení čísel v počítači, principy provádění aritmetických operací. Booleova algebra, kombinační a sekvenční logické obvody) | IN (číselné soustavy, vztahy mezi číselnými soustavami, zobrazení čísel v počítači, principy provádění aritmetických operací. Booleova algebra, kombinační a sekvenční logické obvody) | ||
| Řádek 11: | Řádek 12: | ||
| je způsob reprezentace čísel. Podle způsobu určení hodnoty čísla z dané reprezentace rozlišujeme dva hlavní druhy číselných soustav: poziční číselné soustavy a nepoziční číselné soustavy. V praxi se však také používaly způsoby reprezentace používající postupy z obou těchto druhů. Dnes se obvykle používají soustavy poziční. | je způsob reprezentace čísel. Podle způsobu určení hodnoty čísla z dané reprezentace rozlišujeme dva hlavní druhy číselných soustav: poziční číselné soustavy a nepoziční číselné soustavy. V praxi se však také používaly způsoby reprezentace používající postupy z obou těchto druhů. Dnes se obvykle používají soustavy poziční. | ||
| - | ==== Nepoziční číse | + | ==== Nepoziční číselná soustava ==== |
| - | lná soustava ==== | + | |
| je způsob reprezentace čísel, ve kterém není hodnota číslice dána jejím umístěním v dané sekvenci číslic. Tyto způsoby zápisu čísel se dnes již téměř nepoužívají a jsou považovány za zastaralé. | je způsob reprezentace čísel, ve kterém není hodnota číslice dána jejím umístěním v dané sekvenci číslic. Tyto způsoby zápisu čísel se dnes již téměř nepoužívají a jsou považovány za zastaralé. | ||
| V nejjednodušším systému stačí sečíst hodnoty jednotlivých číslic. Pokud by například byly hodnoty symbolů následující: A = 1, B = 10, C = 100, D = 1000, pak by vyjádřením čísla 3542 mohl být například řetězec „AABBBBCCCCCDDD“. | V nejjednodušším systému stačí sečíst hodnoty jednotlivých číslic. Pokud by například byly hodnoty symbolů následující: A = 1, B = 10, C = 100, D = 1000, pak by vyjádřením čísla 3542 mohl být například řetězec „AABBBBCCCCCDDD“. | ||
| Dalším příkladem nepoziční číselné soustavy je počítání na prstech. | Dalším příkladem nepoziční číselné soustavy je počítání na prstech. | ||
| - | ==== Poziční číselné soustavy ==== | + | ==== Poziční číselné s |
| + | oustavy ==== | ||
| je dnes převládající způsob písemné reprezentace čísel – dokonce, pokud se dnes mluví o číselných soustavách, jsou tím obvykle myšleny soustavy poziční. V tomto způsobu zápisu čísel je hodnota každé číslice dána její pozicí v sekvenci symbolů. Každá číslice má touto pozicí dánu svou váhu pro výpočet celkové hodnoty čísla. | je dnes převládající způsob písemné reprezentace čísel – dokonce, pokud se dnes mluví o číselných soustavách, jsou tím obvykle myšleny soustavy poziční. V tomto způsobu zápisu čísel je hodnota každé číslice dána její pozicí v sekvenci symbolů. Každá číslice má touto pozicí dánu svou váhu pro výpočet celkové hodnoty čísla. | ||
| ==== Polyadické soustavy ==== | ==== Polyadické soustavy ==== | ||
| - | = | ||
| - | == | ||
| - | = | ||
| - | == | ||
| - | |||
| Polyadické soustavy jsou speciálním případem pozičních soustav. | Polyadické soustavy jsou speciálním případem pozičních soustav. | ||
| Řádek 58: | Řádek 54: | ||
| ===== Vztahy mezi číselnými soustavami ===== | ===== Vztahy mezi číselnými soustavami ===== | ||
| - | Číslo v soustavě o základu z<sup>k</sup> (kde z a k jsou přirozená čísla) lze převést do soustavy o základu z jednoduše. | + | Číslo |
| + | v soustavě o základu z<sup>k</sup> (kde z a k jsou přirozená čísla) lze převést do soustavy o základu z jednoduše. | ||
| Převody | Převody | ||