Zde můžete vidět rozdíly mezi vybranou verzí a aktuální verzí dané stránky.
| Obě strany předchozí revize Předchozí verze Následující verze | Předchozí verze | ||
|
home:prog:ap1 [2014/10/27 09:07] 127.0.0.1 upraveno mimo DokuWiki |
home:prog:ap1 [2020/04/12 16:56] (aktuální) |
||
|---|---|---|---|
| Řádek 1: | Řádek 1: | ||
| - | ====== AP1, IN1 Výpočetní systémy I ====== | + | ====== AP1, IN1 |
| + | Výpočetní systémy I ====== | ||
| ===== Zadání ===== | ===== Zadání ===== | ||
| + | = | ||
| IN (číselné soustavy, vztahy mezi číselnými soustavami, zobrazení čísel v počítači, principy provádění aritmetických operací. Booleova algebra, kombinační a sekvenční logické obvody) | IN (číselné soustavy, vztahy mezi číselnými soustavami, zobrazení čísel v počítači, principy provádění aritmetických operací. Booleova algebra, kombinační a sekvenční logické obvody) | ||
| AP (číselné soustavy, vztahy mezi číselnými soustavami, zobrazení čísel v počítači, principy provádění aritmetických operací. Booleova, Shefferova a P//ie//rcova((Správný pravopis je: //Peircova// (čti [ˈpɜrs]) http://en.wikipedia.org/wiki/Charles_Sanders_Peirce)) algebra, kombinační a sekvenční logické obvody.) | AP (číselné soustavy, vztahy mezi číselnými soustavami, zobrazení čísel v počítači, principy provádění aritmetických operací. Booleova, Shefferova a P//ie//rcova((Správný pravopis je: //Peircova// (čti [ˈpɜrs]) http://en.wikipedia.org/wiki/Charles_Sanders_Peirce)) algebra, kombinační a sekvenční logické obvody.) | ||
| - | ===== Číselné soustavy ===== | + | ===== Číselné sou |
| + | stavy ===== | ||
| je způsob reprezentace čísel. Podle způsobu určení hodnoty čísla z dané reprezentace rozlišujeme dva hlavní druhy číselných soustav: poziční číselné soustavy a nepoziční číselné soustavy. V praxi se však také používaly způsoby reprezentace používající postupy z obou těchto druhů. Dnes se obvykle používají soustavy poziční. | je způsob reprezentace čísel. Podle způsobu určení hodnoty čísla z dané reprezentace rozlišujeme dva hlavní druhy číselných soustav: poziční číselné soustavy a nepoziční číselné soustavy. V praxi se však také používaly způsoby reprezentace používající postupy z obou těchto druhů. Dnes se obvykle používají soustavy poziční. | ||
| Řádek 15: | Řádek 17: | ||
| Dalším příkladem nepoziční číselné soustavy je počítání na prstech. | Dalším příkladem nepoziční číselné soustavy je počítání na prstech. | ||
| - | ==== Poziční číselné soustavy ==== | + | ==== Poziční číselné s |
| + | oustavy ==== | ||
| je dnes převládající způsob písemné reprezentace čísel – dokonce, pokud se dnes mluví o číselných soustavách, jsou tím obvykle myšleny soustavy poziční. V tomto způsobu zápisu čísel je hodnota každé číslice dána její pozicí v sekvenci symbolů. Každá číslice má touto pozicí dánu svou váhu pro výpočet celkové hodnoty čísla. | je dnes převládající způsob písemné reprezentace čísel – dokonce, pokud se dnes mluví o číselných soustavách, jsou tím obvykle myšleny soustavy poziční. V tomto způsobu zápisu čísel je hodnota každé číslice dána její pozicí v sekvenci symbolů. Každá číslice má touto pozicí dánu svou váhu pro výpočet celkové hodnoty čísla. | ||
| ==== Polyadické soustavy ==== | ==== Polyadické soustavy ==== | ||
| - | |||
| Polyadické soustavy jsou speciálním případem pozičních soustav. | Polyadické soustavy jsou speciálním případem pozičních soustav. | ||
| Řádek 35: | Řádek 37: | ||
| A = 123 | A = 123 | ||
| A = 123<sub>10</sub> | A = 123<sub>10</sub> | ||
| + | |||
| • Zobecnění pro racionální číslo (zavedeme záporné mocniny): A = a<sub>n</sub> · z<sup>n</sup> +· · ·+a<sub>0</sub> · z<sup>0</sup> +a<sub>−1</sub> · z<sup>−1</sup> +a<sub>−2</sub> · z<sup>−2</sup> +· · ·+a<sub>−m</sub> · z<sup>−m</sup> | • Zobecnění pro racionální číslo (zavedeme záporné mocniny): A = a<sub>n</sub> · z<sup>n</sup> +· · ·+a<sub>0</sub> · z<sup>0</sup> +a<sub>−1</sub> · z<sup>−1</sup> +a<sub>−2</sub> · z<sup>−2</sup> +· · ·+a<sub>−m</sub> · z<sup>−m</sup> | ||
| • Zobecnění pro záporná čísla – přidáním znaménka (pro počítače nevhodné) | • Zobecnění pro záporná čísla – přidáním znaménka (pro počítače nevhodné) | ||
| Řádek 43: | Řádek 46: | ||
| **(10010)<sub>2</sub> = 0 · 2<sup>0</sup> + 1 · 2<sup>1</sup> + 0 · 2<sup>2</sup> + 0 · 2<sup>3</sup> + 1 ·2<sup>4</sup>** | **(10010)<sub>2</sub> = 0 · 2<sup>0</sup> + 1 · 2<sup>1</sup> + 0 · 2<sup>2</sup> + 0 · 2<sup>3</sup> + 1 ·2<sup>4</sup>** | ||
| - | ==== Soustavy užívané v počítačové praxi ==== | + | ==== Soustavy užívané v počítačové pra |
| + | xi ==== | ||
| **Dvojková** (Binární) - z = 2; obsahuje číslice: 0, 1 | **Dvojková** (Binární) - z = 2; obsahuje číslice: 0, 1 | ||
| Řádek 50: | Řádek 54: | ||
| ===== Vztahy mezi číselnými soustavami ===== | ===== Vztahy mezi číselnými soustavami ===== | ||
| - | Číslo v soustavě o základu z<sup>k</sup> (kde z a k jsou přirozená čísla) lze převést do soustavy o základu z jednoduše. | + | Číslo |
| + | v soustavě o základu z<sup>k</sup> (kde z a k jsou přirozená čísla) lze převést do soustavy o základu z jednoduše. | ||
| Převody | Převody | ||